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Analysis of the data from photoelectric gas
polarimeters

Fabio Muleri ∗

Abstract This chapter is dedicated to the description of the tools and procedures

for the analysis of the data collected by X-ray photoelectric gas polarimeters, like

the ones on-board the Imaging X-ray Polarimetry Explorer (IXPE). Although many

of such tools are in principle common with polarimeters working at other energy

bands, the peculiar characteristics and performance of these devices require a spe-

cific approach. We will start from the analysis of the raw data read-out from this kind

of instruments, that is, the image of the track of the photoelectron. We will briefly

present how such images are processed with highly-specialized algorithms to extract

all the information collected by the instrument. These include energy, time of arrival

and, possibly, absorption point of the photon, in addition to the initial direction of

emission of the photoelectron. The last is the quantity relevant for polarimetry, and

we will present different methods to obtain the polarization degree and angle from

it. A simple method, used extensively especially during the development phase of

X-ray photoelectric gas polarimeters, is based on the construction and fitting of

the azimuthal distribution of the photoelectrons. While such a method provides in

principle correct results, we will discuss that there are several reasons to prefer an

analysis based on Stokes parameters, especially when one wants to analyze mea-

surements of real, i.e., not laboratory, sources. These are quantities commonly used

at all wavelengths because they are additive, and then operations like background

subtraction or the application of calibration are trivial to apply, and they are normal

and independent variables to a large extend. We will summarize how Stokes param-

eters can be used to adapt current spectroscopy software based on forward folding

fitting to perform spectro-polarimetry. Moreover, we will derive how to properly

associate the statistical uncertainty on a polarimetry measurement and the relation

with another statistical indicator, which is in the minimum detectable polarization.
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2 Introduction: Photoelectric polarimeters

Photoelectric polarimeters are instruments which measure the polarization in the

X-ray energy band using the photoelectric effect. For each detected photon, the de-

tector provides an estimate of the direction of emission of the photoelectron emitted

as a consequence of the absorption of the photon. This is the quantity correlated to

the polarization of incident radiation and it is conventionally identified by means

of its azimuthal and polar angles, φ and θ , respectively (see Figure 1). The depen-

dence on polarization is expressed by the dependence on φ and θ of differential

cross section of the interaction, which is [1]:

dσPh

dΩ
∝ cos2 φ

sin2 θ

(1−β cosθ )4
, (1)

where β is the photoelectron velocity in units of the speed of light c. Equation 1

indicates that the interaction more probably occurs when the photoelectron is emit-

ted parallel to the direction of the photon electric field, i.e., when φ is 0 or π , and

on the plane orthogonal to the incidence direction, that is, θ ≈ 0, at least at low en-

ergy, β ≪ 1. Emission is suppressed in the direction orthogonal to the electric field

(φ = 0), which, however, holds true in exact terms only when the photon is absorbed

by an electron in a spherical shell [2]. This is usually the largely-dominant case in

the energy range of real photoelectric polarimeters and, therefore, we will assume

in the following that Equation 1 can be extended to all events.

The discussion above indicates that the information on the polarization of the

absorbed photons is contained in the azimuthal distribution of the photoelectron di-

rection of emission, and photoelectric polarimeters can measure it with different ap-

proaches. A simple approach is to relate the probability of events hitting two pixels

in finely subdivided semiconductor detectors to the emission direction of the photo-

electron (see [3] and references therein). Typically, modern devices absorb X-rays

in a gaseous medium to generate tracks with sufficient length which can be resolved

in details on a 2-dimensional image, as in the device in Figure 1. Photoelectron

image can be generated with the collection of ions produced by ionization by the

photoelectron along its path [4, 5, 6, 7] or by imaging the scintillation light gener-

ated by recombination of generated ions [8]. In all cases, an algorithm is applied to

the image to estimate the absorption point of the photon and the initial direction of

the photoelectron (see Section 3). Interestingly enough, practical implementations

of photoelectric polarimeters are usually not designed to measure the polar angle of

the event. In fact this is not sensitive to polarization, albeit, in principle, it could be
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Fig. 1: Concept of operations of a typical photoelectric polarimeter. The X-ray pho-

ton is absorbed in the sensitive volume, typically filled with a gas mixture. The path

of the photoelectron in the medium is the response of the device, which is analyzed

off-line to determine the azimuthal direction of emission ϕ which is correlated with

the electric field direction of the absorbed photon.

useful to discard tracks which are emitted towards the detector plane (or away from

it) and then they are more difficult to resolve.

It is worth noting that the angle φ in Equation 1 and the measured azimuthal

angle, indicated as ϕ in Figure 1 are in principle different: φ is the azimuthal an-

gle measured from the photoelectron electric field on the plane orthogonal to the

incident direction, whereas ϕ is the same angle but measured on the plane of the

detector and from one of its reference axes. In the common case in which photons

are incident orthogonal (or nearly-so) to the detector, φ and ϕ simply differs of an

offset, which is the polarization angle. In the discussion to follow, we will always

implicitly assume that such a condition is satisfied. In the more general case of a

large-field-of-view instrument in which photons can impinge at large angles, the

response of a photoelectric polarimeter depends not only on polarization of the in-

cident photons but also on their direction, and the analysis requires specific tools

[9].

3 Reconstruction of photoelectron track

The response of a photoelectric gas polarimeter is the 2-dimensional image of pho-

toelectron absorbed in its sensitive volume, projected on the plane of the detector

(see Figure 1). We show in Figure 2 real photoelectron images generated from X-

ray photons absorbed in one of the flight Gas Pixel Detectors[4, 5, 6] built for the
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Imaging X-ray Polarimetry Explorer (IXPE, [10, 11, 12]). Absorbed photons had

energy 2.3 keV and 6.4 keV for the events in Figure 2a and Figure 2b, respectively,

which lie close to the boundaries of the instrument energy range, which is 2-8 keV.

Photons are absorbed in the region where the track has a lower charge density, as

the photoelectron loses more and more energy as it slows down. During its path, the

photoelectron suffers scattering with atomic nuclei in the absorbing medium which

tend to cancel the information on its initial direction of emission.

(a) (b)

Fig. 2: Photoelectron tracks measured with the photoelectric polarimeters on-board

IXPE at 2.3 keV (a) and 6.4 keV (b). The tracks are processed with an algorithm to

derive the direction of emission (green line) and the absorption point (green point).

Credit: the IXPE team.

As expected, high-energy photons generate longer tracks, which are easier to re-

solve and shows richer details, whereas the features in low-energy tracks are barely

visible. Nonetheless, effective area of X-ray instruments and spectra of astrophysi-

cal sources decrease quickly with energy, and, as a matter of fact, peak of sensitiv-

ity of photoelectric polarimeters is usually close to the low-energy boundary. The

first challenge in the analysis of data from photoelectric polarimeter is therefore

to design an algorithm able to estimate the initial direction of the photoelectron,

especially when its image shows just a few details.

Different approaches have been put forward to reconstruct photoelectron tracks.

The simplest is a custom algorithm originally developed for the GPD [13], which is

based on the calculation of momenta of photoelectron image after that a clustering

algorithm is used to separate the track from noise [12]. The barycenter of the charge

distribution provides the estimate of the absorption point, and the direction that min-

imize the second momentum is the direction of the photoelectron. Especially at high

energy, when the photoelectron track is longer, it is convenient to repeat the algo-

rithm on the initial part of the track only, which is distinguished as the end with
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lower charge density. An alternative, which is particularly effective when the track

has rich features, is to use more complicate techniques, such as the shortest path

problem in graph theory [14] or convolutional neural networks [15, 16].

The capability of measuring the absorption point of the photon provides to pho-

toelectric polarimeters imaging capabilities. Moreover, the total charge in the pho-

toelectron is proportional to the energy of the absorbed photon. Using the trigger of

the event to measure the time of arrival, a photoelectric polarimeter can therefore

measure all the information transported by the radiation.

4 A simple analysis with the modulation curve

The number of photoelectron emitted per azimuthal angle is expected to be anisotropic

when absorbed photons are polarized. The signature is specifically a cosine square

modulation, remindful of φ -dependence of differential cross section (see Equa-

tion 1), with amplitude proportional to the polarization degree and with a maxi-

mum in the direction of the polarization angle. To evaluate it, a simple procedure is

to build the histogram of the reconstructed photoelectron emission angles with M

bins, named modulation curve (see Figure 3), and fit it with the function2:

M (ϕ) = A+Bcos2(ϕ −ϕ0). (2)

In absence of background, the polarization degree P is defined as the ratio be-

tween the flux of the polarized component with respect to the total. The first term

is causing the observed modulation in the modulation curve, and therefore P is

proportional to the measured modulation amplitude a:

a =

∫ +π
−π Bcos2(ϕ −ϕ0)dϕ

∫ +π
−π [A+Bcos2(ϕ −ϕ0)]dϕ

=
B

B+ 2A
. (3)

The normalization factor between P and a is named modulation factor, which

is the modulation measured when absorbed photons are 100% polarized:

P =
a

µ
=

1

µ

B

B+ 2A
. (4)

The modulation factor of a polarimeter accounts for the fact that real detectors can

not provide a perfect reconstruction of the event, that is, the direction of emission

of the photoelectron is reconstructed with a certain uncertainty. As the quality of

the photoelectron track changes with energy, also the modulation factor does. It can

be obtained from detailed simulations or accurate measurements, the latter being

2 The modulation curve can be fitted with alternative functions, e.g. M (ϕ) = C +
M cos [2(ϕ −ϕ0)]. It is trivial to use trigonometric functions to prove that these treatments are

equivalent.
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Fig. 3: Representation of the response of a photoelectric polarimeter with the mod-

ulation curve, that is, the histogram of the photoelectron directions of emission. In

case photons are polarized, the modulation curve shows a cos2 modulation with an

amplitude proportional to the degree of polarization and a phase ϕ0 corresponding

to the polarization angle. In case of unpolarized radiation, the response is uniform

as a function of the azimuthal direction.

necessary for a fully representative result. The polarization angle is the value ϕ0

obtained by the fit with Equation 3, which is defined modulo its period π .

5 The Minimum Detectable Polarization

When the procedure described in the previous section is applied to a modulation

curve measured in case of unpolarized photon, the result is always the detection of

a certain modulation amplitude, albeit small (see Figure 4). This is caused by the

fact that the number of detected photons in a certain bin of the modulation curve

is Poisson-distributed, and the independent statistical fluctuations among different

bins always cause to detect a cosine-square modulation. The amplitude of such a

component is to all extent the statistical limit of the measurement. This is quantified

introducing the Minimum Detectable Polarization (MDP), which is defined as the

maximum polarization which can be produced by statistical fluctuations only in

absence of true source polarization, at a certain confidence level C = 99%. The

MDP depends on the number of source (and background) events, that is, on the

instrument effective area, and on the modulation factor. Therefore, the MDP is also

a meter of the detector sensitivity, and, once referred to an observation of reference

source for a specific duration, it can be used to compare the sensitivity of different

experiments.

The value of the MDP for a certain observation for which N events are collected

can be derived by the probability P of measuring a certain polarization P in case
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Fig. 4: Example of a real modulation curve obtained with unpolarized radiation with

the GPD. Zooming in, a certain cosine-square modulation is always measured.

the true polarization P0 is zero, integrated over the observed angle of polarization

[17]:

P(N,P|P0 = 0) =
N

2
µ2

P exp

[

−N

4
(µP)2

]

. (5)

By definition, the MDP is the value at which the cumulative distribution function

of P is 99%, that is (see Figure 5):

0.99 =

∫

MDP

0
P(N,P|P0 = 0)dP = 1− exp

(

−(MDP2 N µ2)/4
)

. (6)

Fig. 5: Probability distribution function of the measured polarization degree when

the source is unpolarized. The MDP is defined as the value for which the cumulative

distribution function is 0.99.

Inverting Equation 6 for the MDP, one finds:

MDP =

√
−4 ln0.01

µ
√

N
≈ 4.29

µ
√

N
, (7)
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which is the well-know expression in case the background is negligible. Incidentally,

this result quantifies the claim that polarimetry is a ”photon-hungry” technique. To

achieve, with an instrument with average modulation factor 30%, an MDP of 1%,

that is, smaller than the polarization expected from many astrophyiscal sources, one

needs to collect ∼ 2 ·106 events. This is orders of magnitude larger than the statistics

needed to build a spectrum.

In case of non-negligible background, the MDP can be calculated with [18]:

MDP ≈ 4.29

µ

√

Nsrc +Nbkg

N2
src

. (8)

It is worth stressing that Equation 8 is valid when the background contribution is

known, intending its expected modulation amplitude and phase. In this case, even

if the background can be removed from the measurement, its statistical fluctuations

still limits the achievable MDP.

6 Stokes parameters

The approach presented in Section 4 has the advantage to be simple and close to

the underlying physics of the detector, and to provide directly the polarization de-

gree and angle, which are the physical observables which one is usually interested

in. However, it shows limitations in practice, for example it is not trivial to subtract

a background or apply the calibration of the detector with proper statistical treat-

ment. Manipulation of the measured signal can be easily achieved by using Stokes

parameters.

Stokes parameters are a 4-dimension vector, usually indicated with (I,Q,U,V ),
which is used to completely describe the state of polarization of radiation, intending

both its linear and circular polarization and its intensity [19]. Their use has been

common especially at wavelengths longer than X-rays, but as we will see Stokes

parameters are adequate and convenient also to describe polarization at higher en-

ergy.

There are several equivalent ways to define Stokes parameters, each fitting better

with the measurement procedure in a specific energy range. For example, in optical

light or infrared, the intensity of radiation component polarized in a certain direc-

tion, e.g. at I0 at 0◦, I90 at 90◦, can be easily measured as it is for right and left

circularly polarized components, Irc and Ilc. Then, Stokes parameters are defined as

[19]:



















I = I0 + I90

Q = I0 − I90

U = I45 − I−45

V = Irc − Ilc

.
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In radio, one measures the amplitude Ex and Ey of the wave in orthogonal direc-

tions as a function of time, and operations like correlation (and conjugation) of the

signal are readily available. In this case, Stokes parameters are usually defined as

[19]:


















I = ExE∗
x +EyE∗

y

Q = ExE∗
x −EyE∗

y

U = ExE∗
y +EyE∗

x

V = i ExE∗
y −EyE∗

x

,

where the line indicates the averaged value over time.

In the X-ray energy range, current implementations of polarimeters are not sen-

sitive to circular polarization and in fact only I, Q and U can be measured and will

be discussed hereafter. A method to calculate them is fitting the modulation curve

with a function depending explicitly on Stokes parameters[20]3:

M (ϕ) = I +Qcos2ϕ +U sin2ϕ . (9)

An alternative approach consists in calculating the Stokes parameters for each

event (ik,qk,uk) [21]. If ϕk is the (reconstructed) emission angle of the k-th photo-

electron 4:










ik = 1

qk = 2cos2ϕk

uk = 2sin2ϕk

. (10)

From this definition, it follows that Stokes parameters qk and uk are the abscissa

and the ordinate of a vector with length 2 and forming an angle 2ϕk with the x-axis.

Although it is more common at other wavelengths to define them as vector with

unit length, the factor 2 takes into account the peculiar cos2 distribution of events

observed with X-ray instrumentation and we will adopt it in the following.

Stokes parameters for a measurement are obtained by summing event Stokes

parameters over the entire data set:































I =
N

∑
k=1

ik = N

Q =
N

∑
k=1

qk

U =
N

∑
k=1

uk

. (11)

3 In our definition we inverted Q and U with respect to the the original paper [20] for consistency

with the usual formulae to derive polarization at other wavelengths.
4 With respect to [21], we added a multiplicative factor equal to 2 to the definition of qk and uk

(compare our Equation 20 to Equation 9 in [21]). Although this makes Stokes parameters Q and U

variable in the [−2÷ 2] range rather than in the usual [−1÷ 1], such a choice allows one to have

equation for the calculation of polarization degree consistent with other wavelengths. Notwith-

standing, the two treatments are fully equivalent.
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Stokes parameters can at any moment be converted to (linear) polarization degree

and angle (and vice versa). However, the usual formulae applicable at all wave-

lengths must be modified to account for the modulation factor of the instrument,

which is a peculiarity of X-ray polarimeters:

P =
1

µ

√

Q2 +U2

I
=

1

µ

√

q2 + u2 (12)

ϕ0 =
1

2
arctan

U

Q
=

1

2
arctan

u

q
(13)

where q = Q/I and u =U/I are normalized Stokes parameters.

It is worth noting that event-by-event calculation of Stokes parameter does not

provides expected values identical to those obtained by fitting with the function

M (ϕ) in Equation 9; in fact, the obtained values are proportional, the constant of

proportionality being the number of bins in the modulation curve, M. Neverthe-

less, the two approaches are completely equivalent as the observable quantities are

the polarization degree and angle, which are invariant for proportional Stokes pa-

rameters. In the following, we will assume to determine Stokes parameters with the

event-by-event approach, and to use normalized Stokes parameters when convenient

to make the measured value independent on the number of collected events.

We also stress that the normalization by the modulation factor is typically done

when calculating the polarization degree with Equation 12, but one can equivalently

define µ-normalized Stokes parameters:































I =
N

∑
k=1

ik = N

Q = 1
µ

N

∑
k=1

qk

U = 1
µ

N

∑
k=1

uk

⇒
{

P =

√
Q2+U2

I

ϕ0 =
1
2

arctan U
Q

. (14)

We will not develop further this possibility in the following, sticking to the more

conventional definition given in Equation 11. However, the interested reader can

easily derive the formulae discussed below in the former assumption.

7 Properties of Stokes parameters

The use of Stokes parameters with respect that the approach described in Section 4

has several advantages. While P (or a) and φ0 are dependent, Stokes parameters

can be considered normal and independent variables if a large number of events are

collected and the measured modulation is small [20, 21]. Both of these conditions

are satisfied in practice for all observations of astrophysical sources carried out with

photoelectric polarimeters and their validity will be adopted hereafter. In such an
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assumption5, the standard deviation on the (normalized or not) Stokes parameters is

simply:











σI ≈
√

N

σQ ≈
√

2N

σU ≈
√

2N

or

{

σq ≈
√

2/N

σu ≈
√

2/N
. (15)

Stokes parameters are additive. In case the observation is affected by a sig-

nificant background, it is trivial to subtract it once that its Stokes parameters

(Ibkg,Qbkg,Ubkg) are known. The first step is to re-scale the background Stokes pa-

rameters, assumed to be measured with an observation with duration Tbkg, to the

duration of the observation Tobs. Then, if (I,Q,U) is measured for the observation

and η = Tobs
Tbkg

, source Stokes parameters are derived with:











I = Isrc +η Ibkg

Q = Qsrc +η Qbkg

U =Usrc +η Ubkg

⇒











Isrc = I −η Ibkg

Qsrc = Q−η Qbkg

Usrc =U −η Ubkg

. (16)

Statistical uncertainty on the source Stokes parameters can be derived by standard

error propagation of uncertainty on the measured and background values, e.g.:

σQ src =

√

σ2
Q +

(

Tobs

Tbkg

)2

σ2
Q bkg. (17)

Additivity of Stokes parameters is handy also to apply calibration. While the

response of an ideal instrument is, apart from statistical fluctuations of the signal,

azimuthally uniform, real devices may present a signal also in case of unpolarized

radiation. The second armonic of such a signal, which has a period of 180◦, is usu-

ally referred to as spurious modulation and it has the same signature as the signal

generated by a genuine polarization. Therefore, spurious modulation has to be sub-

tracted from data to obtain the true source polarization.

The amplitude and phase of spurious modulation can be measured with accurate

calibration measurements, or, if possible, derived from simulations. As the modula-

tion genuinely produced by polarization, spurious modulation can be expressed with

Stokes parameters, (Ism,Qsm,Usm), and as such subtracted from measured values as

a background. One has only to assume η = 1 in Equations 16.

A notable case is when spurious modulation is dependent on photon energy and

absorption point. In this case, a convenient approach is to subtract event-by-event

spurious modulation so that the subsequent analysis can proceed essentially as for

an ideal detector [23]. The first step is to use calibrations (or simulations) to gen-

erate maps of normalized Stokes parameters of spurious modulation at different

energies, (qsm,usm). The maps are then interpolated to find the estimate of the spu-

5 The interested reader is referred to [21] and [22] for the more general case.
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rious modulation for the measured absorption point (x̄, ȳ) and photon energy, Ē .

The spurious-modulation corrected Stokes parameters of the event are derived by

the measured photoelectron angle ϕk with:

{

qcorrected
k = qk − qsm(x̄, ȳ, Ē) = 2cos2ϕk − qsm(x̄, ȳ, Ē)

ucorrected
k = uk − usm(x̄, ȳ, Ē) = 2sin2ϕk − usm(x̄, ȳ, Ē)

. (18)

Corrected Stokes parameters are not proper Stokes parameters, in the sense that

they can not be considered the abscissa and the ordinate of a vector with length 2 as

it is for qk and uk. Practical effect is that, from them, it is not possible to properly

defined a corrected photoelectron angle ϕcorrected
k . Notwithstanding, it can readily

be shown that, when summed over a data set, the expected value of the corrected

Stokes parameters is the source values[23]:

{

< Qcorrected >= ∑k qcorrected
k = Qsrc = Q−Qsm

<Ucorrected >= ∑k ucorrected
k =Usrc =U −Usm

. (19)

The standard deviations is approximately the same as the one of the observation,

e.g., σQ corrected ≈ σQ, as long as the calibration of spurious modulation is carried

out with an adequate statistics larger than that of the observation. For the more

general case, the reader is referred to [23].

Event-by-event Stokes parameters allow to introduce weights in the analysis.

These are intended to increase the importance of those tracks which can be recon-

structed with a smaller uncertainty because of the better quality of the photoelectron

image. Depending on the algorithm used, different parameters can be used to quan-

tify the quality of the track. It can be shown that the best weight is proportional to

the modulation factor, and topological properties of the charge distribution or the

output of convolutional neural networks have been used [24, 16, 25].

Weights are introduced in the event-by-event analysis with a simple modification

of Equation 20 [21]:










ik = wk

qk = wk ·2cos2ϕk

uk = wk ·2sin2ϕk

. (20)

The effect of weights is to increase the modulation factor, at the expense of a

reduction of the ”effective” number of events used in the analysis. The latter effect

can be quantified with the introduction of the quantity:

Neff =
(∑k wk)

2

∑k w2
k

=
I2

W2

with W2 = ∑
k

w2
k . (21)

In fact, Neff replaces the number of collected events N in the formulae for the calcu-

lus of sensitivity. In weighted analysis, the standard deviations on normalized Stokes

parameters becomes [21]:
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σq = σu ≈
√

2

Neff

(22)

and the MDP (in case of absence of background) is:

MDP =
4.29

µ
√

Neff

. (23)

Weights allow to increase the overall sensitivity of a photoelectric polarimeter.

Typical values is an increase of a few tens of % in the modulation factor, a reduction

of Neff/N ∼ 0.9 and an overall decrease of the MDP >10% [24].

8 Spectro-polarimetry with Stokes parameters and

forward-folding

Definition and additive property make Stokes parameters essentially flux quantites.

I is the source flux, while Q and U encode, in addition to source flux, the polariza-

tion angle and degree of the source. As these three quantities completely describe

the source emission and they are dependent, it is highly desirable that their analysis

is carried out simultaneously. [26] defined a simple method to extend the common

tools developed for X-ray spectroscopy, applicable to I, to include also linear po-

larization represented by Q and U . This provides a standardized way of performing

spettro-polarimetry and we will review the results in the following.

Spectral analysis is often carried out with software, like XSPEC [27], which

adopts a procedure named forward folding. This consists in modeling the source

spectrum from the measured one with the known response of the instrument. The

first step is to define an input model with certain start parameters. Instrument re-

sponse functions are used to calculate what the measured spectrum would be in case

the source had the assumed model. The process is iterated to find the input model

parameters which minimize the difference between the calculated and measured

spectra with a procedure such as χ2 fitting.

The response function used for spectral analysis comprises the effective area

ε(E) of the instrument, which is its collecting area, and the redistribution matrix

R(E0,E). The latter expresses the probability that a photon with energy E is recon-

structed with an energy E0. To handle polarization, an additional quantity has to be

introduced which accounts for the probability that a photon with a certain polariza-

tion is measured with a different one. It can be shown [26] that such a probability is

related to the amplitude of the instrumental response to polarization and, ultimately,

it is the modulation factor µ(E) of the instrument. The underlying assumption is that

the polarimetric response is independent on the effective area and energy dispersion,

which is typically verified for real instruments, and that it does not depend on the

polarization degree or angle of the source. The last assumption holds true when the

response of the instrument can be treated as ideal, that is, spurious modulation, if

present, is subtracted with a method such as that described above.



14 Fabio Muleri

The effective area, the redistribution matrix and the modulation factor are all the

response functions which are needed to perform the forward folding procedure with

spectro-polarimetric data. In fact, in case the model Stokes parameters are I ,Q
and U , the observed Stokes parameters I,Q and U over a certain energy bin can be

calculated with:











I =
∫

E ′ I (E) ε(E ′) R(E ′,E)dE ′

Q =
∫

E ′ Q(E) µ(E ′) ε(E ′) R(E ′,E)dE ′

U =
∫

E ′ U (E) µ(E ′) ε(E ′) R(E ′,E)dE ′
. (24)

It is worth stressing that in this approach the analysis of Q and U requires “only”

to use a response function µ(E ′)× ε(E ′) instead of the canonical ε(E ′) commonly

used for I by current software for spectral fitting. This is a relatively small change

in the analysis flow and, needless to say, a great advantage when one wants to use

the power of spectral analysis together with polarization.

9 Polarization and its statistical uncertainty

Visualization of the result of a polarization measurement with proper uncertainties

can be done in different ways. A first option is to use Stokes parameters, which in

this case it is convenient to normalize for both I and the modulation factor µ , to

have a result directly expressed in polarization and not in amplitude. An example

is reported in Figure 6. Measured values are q0 = 4% and u0 = 4% which, once

normalized by µ (assumed to be 0.3), translate in the coordinates ( 4
0.3 ,

4
0.3). The

1-σ uncertainty on either q or u is σq = σu = 1
µ

√

2
N

, which is Equation 15 but

normalized by the modulation factor. The measured polarization degree P0 is the

radius of the measured point from the origin, while the polarization angle is half

of the angle that the radius forms with the abscissa. Circles with different radii and

centered in the axis origin represent constant polarization values and also the MDP

can be represented as a circle.

It is worth stressing here once more the meaning (and difference) between the

MDP and the error on the measurement. The former quantity is a very simple statis-

tical quantity, which expresses the maximum polarization that the user should expect

to measure (at a confidence level of 99%) because of statistical fluctuations in the

assumption that the source was not polarized. If the measured value is larger than

the MDP, this means that there is a probability smaller than 1% that such a value

would be measured in case the source was unpolarized, and then the user can claim

that the source is polarized at this confidence level. On the contrary, if the measured

value is below the MDP, there is a high chance that the user obtained that value

only because of statistical fluctuations and not because the source was genuinely

polarized.

Error on the measurement has a completely different meaning. It expresses how

large is the interval in which the true value lies, and then it can be used to compare
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Fig. 6: Example of visualization of a measurement result with Stokes parameters.

The measured values are q0/µ ≈ 13% and u0/µ ≈ 13%. Modulation factor is as-

sumed to be µ = 0.3 and the number of collected counts is 50,000. The 1-σ uncer-

tainty on either q or u is σq = σu =
1
µ

√

2
N

, which is Equation 15 but normalized by

the modulation factor.

the measured value with respect to, e.g., a model prediction. So, to be credible,

the measured value must be higher than the MDP and the error on the measurement

must not include the space region in which the polarization is zero, that is, the origin

of axis in Figure 6. Clearly, these two requirements are interdependent, as both

depend essentially on the number of collected counts and the modulation factor, and

they should provide a coherent indication on the credibility of the detection.

There are cases in which it is more convenient to plot polarization degree and

angle instead of Stokes parameters. In this case, one has to remember that these two

parameters are dependent to properly derive the statistical uncertainty on the mea-

surement. To derive the confidence region of a measurement in the (P,ϕ) plane,

we start from the assumption that Stokes parameters are normally distributed and

independent. As we discussed in Section 6, this holds true when the µP ≪ 1. In

this assumption, the probability distribution function when the measured value is

(q0,u0) is a bivariate normal distribution [21]:

P(N,q|q0,u|u0) =
1

2πσ2
exp

[

− (q− q0)
2 +(u− u0)

2

2σ2

]

, (25)
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where, for uniformity of our notation, Stokes parameters are normalized by I but

not by the modulation factor, and then we will have to normalize by µ when passing

from Stokes parameters to polarization.

By definition, the statistical uncertainty at a certain confidence level C is the

region such that, integrating over it, we obtain C:

C =

∫ ∫

P(N,q|q0,u|u0)dqdu =

∫ ∫

P(N,P|P0,ϕ0)dPdϕ . (26)

Now, we have to find a convenient way to express P(N,P|P0,ϕ0) and its inte-

gration interval. First of all, we note that the argument of the exponent of P de-

fined in Equation 25 is the distance between the measured point with coordinate

(q0,u0) and the generic point on the plane (q,u). Recalling Equation 12 and that

σ = σq = σu =
√

2/N, such a term can be rewritten as (see Figure 7):

− (q− q0)
2 +(u− u0)

2

2σ2
= −Nµ2

4

{

P
2 +P

2
0 − 2PP0 cos [2(ϕ −ϕ0)]

}

=

= −Nµ2

4
δ 2

P . (27)

Here δP = P2 +P2
0 − 2cos [2(φ −φ0)] is essentially the difference in degree of

polarization between the measured point (q0,u0) and the generic point (q,u).
The integration interval is trivial to define in the (q,u) plane, as it is a circle with

center the measured point(q0,u0) and radius µδP . Such a region is more easy to

integrate if we pass from variables (q,u) to (δP ,ψ) (see Figure 7). Then:

{

q = q0 + µδP cosψ

u = u0 + µδP sinψ
⇒ dqdu = µ2δPdδPdψ . (28)

With the help of Equation 27 and Equation 28, Equation 26 can eventually be

rewritten as:

C =
N

4π

∫ 2π

0
dψ

∫ δmax

0
exp

(

−Nµ2

4
δ 2

P

)

µ2δPdδP . (29)

The integration is now trivial as δP does not depend on ψ and the result is [17]:

δmax =

√

−4ln(1−C)

Nµ2
. (30)

We have now completely characterized the confidence region in the (q,u) plane

as a circle with radius µδmax and described with the parametric variable ψ running

in the interval [−π ,π ]. To transform such a region in (P,ϕ) plane we first note that

(see Figure 7):
{

q = µP0 cos(2ϕ0)+ µδmax cosψ

u = µP0 sin(2ϕ0)+ µδmax sinψ
(31)
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Fig. 7: Definition of the quantities introduced for deriving the statistical uncer-

tainty on polarization degree and angle. Measured normalized Stokes parameters are

(q0,u0), and measured polarization degree and angle (P0,ϕ0). The generic point

on the plane is (q,u), or (P,ϕ). The difference in polarization degree between the

generic point and the measured point is µδP ,

and then [17, 20]:







P =

√
q2+u2

µ =
√

P2
0 + δ 2

max + 2P0δmax cos(ψ − 2ϕ0)

ϕ = 1
2

arctan( u
q
) = 1

2
arctan

P0 sin(2ϕ0)+δmax sinψ
P0 cos(2ϕ0)+δmax cosψ

. (32)

Equation 32 is the system of parametric functions, with variable ψ , which de-

scribes the region on the (P,ϕ) plane at a confidence level C, which determines

the value δmax together with the number of collected counts N. Such a region is

plotted in Figure 8 for a confidence level of 68.3% for a decreasing significance of

the measurement. While the region is essentially elliptical when the measurement

has a high signal-to-noise (S/N), its contour tends to elongate when the S/N is low

and all angles are possible when the measurement is not significant.

The maximum and minimum values of the polarization degree and angle inside

the contour are the boundaries over which they vary at the selected confidence level.

It is useful to calculate them when C = 68.3%, as this is the statistical uncertainty

usually quoted with the measurement. For P the calculation is trivial, as it varies in

the interval [P0 − δmax,P0 + δmax] as ψ varies and then:
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Fig. 8: Example of visualization of a polarization measurement expressed in degree

and angle, as a function of its signal-to-noise (S/N). The confidence level is 68.3%,

N = 300,000, µ = 0.3 and ϕ0 = 0. Error bars are derived with the “1-D” treatment.

σP = δmax|C=68.3% ≈ 1

µ

√

4.60

N
. (33)

This remains valid as long as the measurement is significant at the selected confi-

dence level, that is, P0 > δmax; otherwise, lower bound for P is zero.

Deriving the same interval for ϕ requires some math. Parametric function de-

scribing ϕ has two critical points which can be written as:

ϕ1,2 = ϕ0 ±
1

2
arctan

δmax
√

P2
0 − δ 2

max

. (34)

The largest value between ϕ1 and ϕ2 is the maximum polarization angle (it

changes with ψ), whereas the minimum is the smaller of these two numbers. There-

fore:

σϕ =
1

2
arctan

δmax|C=68.3%
√

P2
0 − (δmax|C=68.3%)2

. (35)

In case the measurement has a high statistical significance, P0 ≫ δmax and Equa-

tion 35 can be approximated with:

σϕ ≈ 1

2

δmax|C=68.3%

P0

=
1

2

σP

P0

. (36)
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There is another possible approach to derive the statistical uncertainty on a po-

larization measurement, which is to simply propagate statistical uncertainty on the

measured Stokes parameters. Using Equations 12 and 13, 1-σ uncertainty propa-

gated in this way reads [20]:

σ1D
P =

1

µ

√

q2σ2
q

q2 + u2
+

u2σ2
u

q2 + u2
=

1

µ
σ =

1

µ

√

2

N
(37)

σ1D
ϕ =

1

2(q2 + u2)

√

u2σ2
q + q2σ2

u =
1

2µP
σ =

1

2µP

√

2

N
=

σ1D
P

2P
(38)

where we neglected the uncertainties on I or on µ , as they are supposed to be much

smaller that σq or σu, and we used the superscript “1-D” to distinguish the values

found with this approach from the ones in Equation 33 and 35. It is important to

stress that this procedure does assume that P and ϕ are independent variables,

which are not. Therefore, the uncertainty calculated in this ways has a different

meaning with the respect to the value calculated above, even if in both cases we

assumed a confidence level of 68.3%. Equation 33 and 35 provide the combined

interval for both the polarization degree, that is, we can say that our measurement

constrained the polarization degree in the interval P0 ± σP and the polarization

angle in ϕ0 ±σϕ . On the contrary, 1-D uncertainties provide such an interval for

only one of them, leaving the other one unconstrained [20]. Then, one can say that

polarization has a 1-σ uncertainty equal to σ1D
P

, but as the polarization varies in

such an interval the polarization angle is left unconstrained.

1-D uncertainties are shown together with “combined” ones in Figure 8. If we

compare Equations 33 and 37, 1-D uncertainty on polarization degree is nearly 40%

smaller than the corresponding “combined” one. This is true also for the polariza-

tion angle, as in both approaches the uncertainty on ϕ is approximately proportional

to σP . While the decision to use combined or 1-D uncertainties should taken on a

case-by-case basis, when one wants to use the full potential of polarization measure-

ment, that is, use both the constrain on polarization degree and angle, the appropriate

statistical approach is the combined one.

10 Conclusions

In this chapter we have presented how a polarization measurement obtained with a

photoelectric polarimeter is processed to derive the polarization degree and angle.

Starting from the analysis of the raw data provided by this kind of instrument, that

is, the image of the track of the photoelectron in a medium, we discussed different

methods to derive the measured value and its statistical uncertainty, and to evaluate

the credibility of the measurement.

The intent was to collect in a single reference the basic information that a user

needs to know to use data acquired with photoelectric polarimeters. This is timely,
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as the interest on this topic is rapidly increasing: at the time of writing, the Imaging

X-ray Polarimetry Explorer (IXPE) has been just launched and it is expected to de-

tect polarization from tens of sources of different classes. Before IXPE, PolarLight,

which is a cubesat based on the same photoelectric polarimeter on-board IXPE, has

already provided fresh data [28]. In the next future, the enhanced X-ray Timing and

Polarimetry mission [29] will expand IXPE results with a larger collecting area and

simultaneous spectral and timing observation.

All these opportunities have renewed the interest in the development of data anal-

ysis tools, which, however, are still discussed in specific research papers. Here we

tried to collect and present the results with a uniform notation and approach, typ-

ically preferring a simplified (and easier to follow) approach to a more rigorous

treatment. The interested reader can find the latter in the original papers cited in the

text.

Finally, it is worth mentioning that the discussion presented here is largely shaped

on the analysis tools developed for the IXPE mission. In fact, IXPE has been the

first mission for which a complete set of analysis tools had to be distributed for

the general user, and this has pushed the team to explore and tackle all the issue

along the path, from data reduction to statistical treatment of the measurement. At

the same time, IXPE example also guided the approximations done throughout this

chapter, which are typically adequate for the analysis at its level of sensitivity.
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